Monthly Archives: October 2024

3D Design: Spherenes

Updates:

  • 2024/10/23: finally published
  • 2024/10/11: ready for publishing
  • 2024/01/26: starting write-up

Introduction

At Formnext 2023 I spent some unexpected time to discover a new class of procedural structure called “Spherene” (“sphere” + “graphene”), it’s a name as introduced by a company with the same name.

It’s main feature is isotropic (“all directions”) distribution of forces. Their service provides the creation of this structure based on:

  • density (ratio of material vs empty space), hence their term of Adaptive Density Minimal Surface (ADMS)
  • form
  • wall thickness

where all of them are freely definable in 3D space contained within an overall boundary. Their service “renders” a mesh which complies with such, like defining at some point a lower or higher density, and transits in 3D space from one to another.

Spherene Metamaterial in Simulation-Based DFAM: CDFAM NYC 2024 (Video Presentation)

Patent

My immediate impulse was to code the Spherene aside of the existing TPMS’s, but I realized their business core is the service of creating meshes based on their procedure as described in a patent:

  • Method of Additively Manufacturing a Minimal Surface Structure (Original, 2023), PDF available
  • at its core it describes 6 steps (abbreviations added for clarity)
    1. creating envelope
    2. creating density field
    3. adaptive Voronoi tesselation (AVT),
    4. 1st skeleton graph (SG) associated to AVT (SG-AVT1)
      • generated from the edges of the Voronoi cells
    5. 2nd skeleton graph associated to SG-AVT1 (SG-AVT2)
      • generated using Delaunay tetrahedralization
    6. minimal surface from SG-AVT1 and SG-AVT2, using equidistant from both skeleton graphs, with minimal wall thickness requirements
  • Abstract: A method of additively manufacturing a minimal surface structure of a three-dimensional article includes a computer executing the steps of recording, in the computer,
    • an envelope of the three-dimensional article; generating a density field across a volume enclosed by the envelope with densities of the density field corresponding to local requirement values of at least one physical parameter at respective positions of the three-dimensional article;
    • generating an adaptive Voronoi tessellation of the volume using the density field;
    • generating a first skeleton graph associated with the adaptive Voronoi tessellation;
    • generating a second skeleton graph associated with the first skeleton graph; and
    • generating a digital minimal surface model from the first and second skeleton graphs.
  • The method may further include a 3D printer additively manufacturing the minimal surface structure according to the digital minimal surface model.

I think if Spherene is truly as significant for Additive Manufacturing, and an essential invention, it has to move beyond the grip of a single company and its patents – time will tell.

Samples

Daniel Bachmann from Spherene Inc. kindly shared with me a few samples, 20x20x20mm cubes, and 20mm diameter spheres with Spherene infills, illustrating their properties:

A few support structures were required for the spherical samples, the cubic samples did not require such:

Lychee Slicer: spherical spherenes required support structure due overhangs

Additionally I printed a few cubic samples with FDM on my CoreXY Ashtar C without supports at 40x40x40mm scale.

Subtractive Manufacturing & Molding Usage

The structure cannot very well machined with subtractive manufacturing processes – or only if the piece is sub-divided so all indentations can be milled, and sequentially fused or welded again.

Another approach comes to my mind is to form dedicated bricks, e.g. for large scale application like a building, and have a limited kinds of bricks depending on their position and use case, and have molds to form those limited kinds in larger quantities.

In order to produce a mold one would inverse the original model, the negative volume, that would be produced using additive manufacturing and then produce lost-form casting molds, or highly simplify the form so one can remove the positive without destroying the mold.

References

3D Design: Moebius Strips

Updates:

  • 2024/10/20: published (back dated)
  • 2024/10/11: ready to publish finally
  • 2024/01/16: starting write-up

Introduction

Mathematician August Ferdinand Möbius described in his paper 1858 a shape, which later became known as “Moebius Strip”: a surface with only one side or surface and one edge:

In the physical one can take a strip and twist it once and tape both ends – when creating a 3D representation, one rotates a strip by 180° to a closing circle.

Examples

3D Prints

I printed some of the models on MSLA resin printers with plenty of supports, one more flat and another series more vertical oriented which required more support structure and harder to remove.

References