Tag Archives: Gcode

3D Printing: YAGV: Yet Another G-code Viewer Fork

One of the oldest standalone G-code viewers yagv (Yet Another G-code Viewer) I forked and added following features:

  • ported to Python3
  • new color scheme (white background)
  • parsing G-code comments, determining wall, infill, support structure and render with different colors
  • support for Slic3r, PrusaSlicer, Cura/cura-slicer, Mandoline and Slicer4RTN (non-planar)
  • panning implemented (properly works with zoom and rotation)
    • same mouse button layout as OpenSCAD
  • more test G-code included in tests/

Example of non-planar G-code:

Download

https://github.com/Spiritdude/yagv

Note: I opened a Pull Request (PR) but not sure if it’s accepted.

See Also

3D Printing: GCode File Preview in GNOME

When dealing with a lot of G-code it comes handy to have a small thumbnail preview in the file browser under GNOME, hence I coded this package.

It supports Slic3r, Prusa Slicer and Cura.

Download

https://github.com/Spiritdude/Nautilus_Thumbnailer_GCode

gcode2png

The package includes gcode2png which can be used standalone as well.

20mm cube sliced with Slic3r and converted with gcode2png to PNG
USAGE gcode2png 0.0.7: [<opts>] <file.gcode> ... 
   options:
      --version               print version and exit
      --autolevel             level Z minimum to 0 (default: off)
      --output=<fn>           override .gcode -> .png conversion
      --size=<w>x<h>          set size of image (default: 512x512)
      --rotate=<x>,<y>,<z>    rotate model (default: 30,0,-20)
      --dist=<d>              set distance multiplier (default: 1)
      --color=<r>,<g>,<b>     set color (default: .1,.8,.1)
      --grid=0 or 1           set grid (default: 1)
      --grid_size=<s>         set grid size (default: 10)
      --nozzle=<d>            set nozzle diameter (default: 0.4)
      --complete=<i>          set completeness: 0..1 or 0%..100%
      
   examples:
      gcode2png gcube.gcode
      gcode2png --output=cube-normal.png cube.gcode
      gcode2png --color=1,0,0 3DBenchy.gcode
      gcode2png --complete=50% 3DBenchy.gcode

That’s it.

CAD: ScriptCAD.org Prototype (2019/12)

Around February 2019 I bootstrapped a scripted CAD environment named “ScriptCAD”, and resembles closely to OpenSCAD.org and OpenJSCAD.org (which I co-developed for a couple of years) with a new take, developed from scratch:

ScriptCAD.org: ScriptCAD Logo 2019/11
  • Scripting capability using JavaScript
  • Separate internal representation from display representation
    • Triangulation or Implicit representation
    • only triangulate at late stage at display or export
ScriptCAD.org Internal Stages
  • Intuitive Graphical User Interface (GUI)
    • Simple export various formats
    • Select top-level solids
    • Source <-> TreeView <-> 3D Model selection
Select Source <-> TreeView Item <-> 3D Model

The transparent Source vs Object Tree vs 3D Space has been in the back of my mind for a long time as I keep the connection of each stage intact and transparent.

  • Ease of use
    • hiding JS module complexity and notions
    • Browser use (either use built-in editor or drag-n-drop source with autoreload)
    • Command Line Interface (CLI) use

Screenshots & Examples

SpiritCAD.org Online as Preview

As of November 2019, ScriptCAD.org is reachable as an early preview (alpha stage), most examples work, some do not yet or display wrong output.

Note: there is only limited documentation yet (2019/11), and the API is subject of changes.

I still tune it to my use-cases and therefore API and overall design of the API might change, even drastically; once the API becomes more stable I will release the source code as well.

Some of use-cases (as seen in the gallery above):

  • coding low-level Gcode and use ScriptCAD to preview (render) Gcode including colors, scriptcad (CLI) outputs .gcode to actually print
    • testing single layer color mixed 3D Printing: forms, color mixing
  • ScriptCAD uses ThreeCSG/csg.js at its core to perform CSG operations, which can be very slow – hence, designing complex pieces can be slow as every change recomputes all again (I like to avoid this in future developments) yet as of 0.3.2 basic caching is implemented so only deltas are recomputed.

Introduction Video

The on-going development I document also. That’s it.

3D Printing: Print3r 0.2.x: Networked Printing

A brief post of my local network for 3d printing with several 3d printers, using print3r CLI (Command Line Interface) tool.

20190218_105541

Physical Setup

20190302_164919Orange Pi Zero (single board ARM-based computer) named printhub running Armbian (Debian-like).

  • Ethernet Port connecting to Ethernet/Wifi Hub with its own subnet (192.168.4.x)
  • External USB 4x Hub connecting 3d printers via USB:
    • Ashtar K 1 (Prusa i3-like, 400 x 300 build plate, 330mm height), 0.5mm nozzle (/dev/ttyUSB2)
    • Ashtar K 2 (300 x 300 build plate, 330mm height), 0.4mm nozzle (/dev/ttyUSB1)
    • Ashtar C 1 (CoreXY, 400 x 400 build plate, 380mm height), 0.4mm nozzle (/dev/ttyUSB0)
    • CTC DIY I3 Pro (Y3228), 0.4mm nozzle (/dev/ttyUSB3)

The workstation from which I print from (design and slice) is also connected via Ethernet. The printed violet PLA case I published a while ago on Thingiverse: Orange Pi Zero Case.

Preparation

On printhub (Orange Pi Zero) starting all the network clients processes:

% print3r /dev/ttyUSB0 client &
% print3r /dev/ttyUSB1 client &
% print3r /dev/ttyUSB2 client &
% print3r /dev/ttyUSB3 client &

Usage

On my workstation (a laptop), referencing printer profiles and devices:

% print3r --device=tcp:printhub:0 --printer=ashtar-c-1 print cube.stl
% print3r --device=tcp:printhub:1 --printer=ashtar-k-2 print cube.stl
% print3r --device=tcp:printhub:2 --printer=ashtar-k-1 print cube.stl
% print3r --device=tcp:printhub:3 --printer=y3228 print cube.stl

See Print3r Wiki: Remote Printing for more details.

The CTC I3 Pro B Y3228 low cost printer still runs Marlin 1.0 and 250,000 baudrate which won’t work with ser2net which print3r uses internally to print in network environment, so it needs to be flashed first with newer firmware, so it can be networked as well with common baudrate like 230,400. I upgraded the ~1 year old “CTC DIY I3 Pro B” 3d printer to Marlin 1.1.8 finally, first burning a bootloader with an Arduino Uno, and then properly configured Marlin, and now runs with 115,000 baudrate as well, so it can be networked as well.

Otherwise I stopped using Cura GUI or Slic3r GUI completely, and solely use print3r to first preview the Gcode, sliced with CuraEngine or Slic3r, and then print the parts, and because it runs on the command line, all the previous calls in the terminal are stored as history therefore I can scroll back (cursor-up/down) and repeat a job with slightly changed settings by editing the command line – something which GUI doesn’t offer, unless you save a printjob as .3mf and reload it and click around and change settings and save again as .3mf etc.

Command Inline OpenSCAD

Further, I often code OpenSCAD code directly with print3r for simple parts, e.g. caps for M6 threaded rods, something like:

20190225_090931

% print3r --device=tcp:printhub:0 --printer=ashtar-c-1 --random-placement --scad print 
"difference(){cylinder(d=8.4,h=10);translate([0,0,2])cylinder(d=6.4,h=10);}"

and if the print came out well, I add --multiply-part=3 or so.

Download & Install Print3r

github.com/Spiritdude/Print3r

 

That’s it for now.

 

3D Printing: Print3r 0.1.6 Release

Following major changes of 0.0.9 to 0.1.6 regarding Print3r (command line tool for 3d printing):

Multiple Slicers Support

Now print3r natively supports 4 different Open Source slicers:

  • Slic3r (slic3r)
  • Slic3r PE (Prusa Edition) (slic3r-pe)
  • CuraEngine Legacy (15.04) (cura-legacy)
  • CuraEngine (3.5.x) (cura)

which can be set with --slicer=<slicer> on the command line.

Slicer Independent Settings

Starting with 0.1.0 print3r provides a slicer-independent layer with a growing list of settings:

  • temperature
  • nozzle-diameter
  • filament-diameter
  • bed-temperature
  • etc.

Full list of settings you find at Print3r Github Wiki.

Slicer Specific Settings

Yet, if you must, you can still use slicer-specific settings to fine-tune settings according your print needs and printer capabilities.

Macros (other Profiles)

For often used settings like print quality, or filament settings, you can gather those settings and reference them in the command line like:

% print3r @filament/prusament @thin @hollow cube.scad

Quality Presets:

  • @coarse
  • @medium
  • @fine

Infill/Wall/Perimeter Presets:

  • @heavy
  • @light
  • @feather

OpenSCAD Integration

print3r already supported to print or slice .scad files,

% print3r print cube.scad

and now since 0.1.6 also following command line code integration is possible:

% print3r --scad print "cube(20)"
% print3r --scadlib=washer.scad --scad print "washer(5)"
% print3r --scadlib=parts.scad --scad "c_2020()" "edge_idler()"

Arbitrary Baudrate

Since 0.1.0 also arbitrary baudrate like 250000 (default of Marlin) is supported (Linux only, other platforms not yet), aside the common 115200.

Preview

As external Gcode viewer for preview command yagv is used, a very basic viewer – at a later time it might be replaced.

% print3r preview cube.scad

which converts, slices and preview the Gcode.

Extensive Documentation

Since the functionality of print3r is growing steadily, the requirement for proper documenation demanded its own Print3r Wiki where you find up-to-date information.

Download

https://github.com/Spiritdude/Print3r

3D Printing: Print3r (CLI)

example

Command Line Interface (CLI)

Although 3d parts need to be seen and visually so much is communicated, but Cura’s user interface feels conceptually skewed (“Prepare” vs “Monitor” tab) – and with the time I thought I want an ordinary command line interface to print parts quickly, easily multiply and random placement so the bed surface is more evenly used and not just the center – I have grown tired to move parts on the virtual bed.

So, I wrote print3r, a command line interface which utilizes Slic3r as backend. Its main features (Version 0.0.6):

  • command line interface, no GUI
  • UNIX platform (Linux, *BSD, macOS should work too)
  • print .scad (OpenSCAD), .stl, .obj, .amf and .3mf directly
    • it converts and slices depending on file format as needed
    • takes Slic3r command line arguments
    • multiply part
    • random placement
    • scale, rotate, translate or mirror (.scad or .stl only for now)
  • slice .stl, .obj, .amf and .3mf to .gcode
  • print gcode files
  • send gcode lines direct from command line arguments
  • send interactively gcode commands from the console
  • render .scad, .stl and .gcode to PNG for documentation purposes

Example

% print3r --printer=ashtar-k-30x30.ini --fill-density=0 --random-placement print Parts/cube.scad
== Print3r 0.0.3 == https://github.com/Spiritdude/Print3r
print3r: conf: device /dev/ttyUSB0, bed 300x300mm, nozzle/d 0.5mm, layer/h 0.4mm, filament/d 1.75mm
print3r: scad to stl: done.
print3r: slice parts to gcode: filament usage 79.67cm, done.
print3r: print: printing 0h 09m elapsed, eta 0h 00m, 100% complete (38494 of 38494), z=19.80mm, layer #50, filament 79.67cm

More information on the printer display: progress [%], eta and layer#:

20181005_170351

Result:

20180927_152946

and if you replace ‘print‘ with ‘render‘, like

print3r [...] --output=sample.png render Parts/cube.scad

cube-example

Download

Github.com: Spiritdude/Print3r