Tag Archives: Prusa i3

3D Printer Ashtar M (Draft)

Status: just a draft

Ashtar M (Prusa i3 MG)
Ashtar M IDEX – Draft


  • 2021/01/14: Option IDEX (Independent Dual Extrusion), early draft (not yet tested)
  • 2021/01/07: Y motor and shaft extension with Y pulley holder added
  • 2021/01/03: Z motor mounts added, Y carriage to XZ frame/arch pieces refined using rcube()
  • 2020/12/19: new “XZ Arch” option (removing lower X beam from XZ frame)
  • 2020/12/17: change X carriage, routing X belt inside 2020 alu extrusion
  • 2020/12/12: first drafts, just a skeleton, details still to be worked out


Jon Schone (@properprinting) did a “Moving Portal” (MP) mod for his CR-10 in April 2020, and I thought to adapt his approach as “Ashtar M” as Moving Gantry (MG) using CNC terminology.

Instead to move the bed in Y axis to move the entire XZ frame or gantry – the rest of the Prusa i3 style printer remains the same.

Reducing Moving Weight

Ashtar M with Moving XZ frame using modular & parametric V-carriage

This variant only makes sense when the weight of the bed exceeds the weight of the XZ frame + X carriage, in order to reduce the moving weight as of inertia – so only for large(r) build volume this makes sense:

weight(XZ frame + X carriage) < weight(bed)

and as I compose my Ashtar 3D printer series with alu extrusions (beams) I can say:

weight(XZ frame) = beam X * 2 + beam Z * 2 + NEMA17 * 2
weight(bed) = X * Y

and it becomes here clear, the bed weight grows X * Y whereas XZ frame only (X + Z) * 2, but also 2* NEMA17 motors of the Z axis are part of the XZ frame.

The main differences of Ashtar M and Ashtar K:

Ashtar M (Prusa i3 MG)

  • static bed
  • 2x Y belts
  • 1x Y motor
  • 2x Y beams: V-slot 2020 alu
  • Y axis: 2x V carriages (each 3 wheels)
  • XZ frame is moving (do not add anything more)

Ashtar K (Prusa i3)

  • movable bed with simple sliders
  • 1x Y belt
  • 1x Y motor
  • 2x Y beams: T-slot 2020 alu
  • XZ frame is static (can hold filament, extruders etc)


For now I decided to use my V modules as Y carriages with width of 100mm vcarriage2(width=100) but actual tests are required how stable the moving XZ frame will be.

As you can see on the draft, I lose some build volume because I stack on top of the Y carriage instead within, but if I put the gantry / XZ frame between the Y carriage I need extra long X beams for the outer frame, and make it impossible to achieve uni-length design (same beam length for all); it’s all about balancing a compromise.

XZ Arch Option

The “XZ Arch” option is removing the lower X beam from the XZ frame, hence, extends Z build space as the print bed also goes lower – for now I moved the Y beams supporting the print bed on the lower framework, details how the print bed will be mounted not yet determined. The side piece “A” is a bit shorter, and side piece “B” is a bit more solid – the way the Y belt is fastened remains the same: Y belt ends come out downward, and are fastened with M3 screws & M3 nuts inserts.


  • Build Volume: ~380x400x380mm
  • Frame: 10x 500mm 2020 alu profiles (XZ arch option)
    • 3x or 5x V-Slot 2020 (X, Y and optional Z axis)
    • 7x or 5x T-Slot 2020

Issues to Resolve

  • Y motor & Y pulley holder, likely using 6mm smooth or threaded rod as extender, resolved, details defined with 625ZZ bearings
  • print bed mounting with adjusting nobs to level bed
    • optional remove lower beam of the XZ frame and make it just a gantry, would allow to lower supporting bed beams (space for springs and nobs etc) – but might introduce weaker XZ gantry geometry
  • Y Carriage to XZ Frame mount: either combine the L shape of XZ frame, or have a separate piece to attach – that part likely is the most challenging to get right, using two pieces “A” and “B” to connect to XZ frame with Y carriage
    • resolved in theory, but in actual implementation it will be tricky, as the piece “A” aka ycarriage_xzframe_mount_a() will be printed flat, and quantized by layer height, but the thickness has to be very precise as +/- 0.05mm not to introduce any tilt on the Y carriage (it would damage the V module and/or V wheels and introduce wobble Y-wise), hence 0.1mm layer height required for piece ycarriage_xzframe_mount_a() mounted outside, and ycarriage_xzframe_mount_b() (◤-like piece) mounted inside:
  • Z motor mounts, resolved: how stable it is needs to be tested
  • cabels & bowden tube routing
    • XZ frame moves as well – lot of motion involved – likely not put bowden extruder motor on it and avoid to add additional weight again
    • cable chain to ensure it bends in a controlled manner
  • positioning: controller, display, power-supply, optional: filament holder
    • none of them can be put on the moving XZ frame anymore
  • tuning to common to build-volume with uni-length beams
    • likely 400x400mm build plate achievable, but perhaps 380×400 printable, losing 10-15mm on left- and right-hand side.
  • XZ frame vs XZ arch: to be determined if it’s essential with actual tests
  • build printer
  • print tests
  • release parts
  • release code


Ashtar K & M bed mounting

The bed is stationary, so it’s relatively simple, a bed carriage it still required so the fine level adjustment is possible with some knobs – using the same setup as for Ashtar K.



Printable Parts

  • Y carriage:
    • 2x am_v_plate-2020-double-v-244-110-100w-a
    • 2x am_v_plate-2020-double-v-244-110-100w-b
    • 2x am_zmotor_mount
    • 2x am_ycarriage_xzframe_mount_a
    • 2x am_ycarriage_xzframe_mount_b
  • 1x am_ypulley_holder
  • 1x am_ymotor_mount or 2020_Y_motor_mount
  • 4x am_foot_hh

Non-Printable Parts

  • 2x 625ZZ bearings
    • 2x for 1x am_pulley_holder
  • nx pulleys (dimension not yet determined)
    • 2x (5mm hole) for 1x Y motor, 1x am_ypulley_holder
    • 1x (5mm hole) for 1x X motor
  • nx idlers (with 3 or 5mm hole)
    • 1x (3mm hole) for 1x X belt
    • 2x (3mm hole) for 2x Y belts
  • ~490-500 mm M5 smooth or threaded rod (Y shaft extension)

See the on-going blog-posts on Ashtar M development, with some more details than the overall page here.

IDEX Option

As Ashtar M shares much of Ashtar K design, the IDEX option comes easily – yet, adding a 2nd motor on the moveable XZ frame/gantry definitely pushes the limits of Ashtar M, significant forces will be applied at high Z positions while moving Y axis.

In order to run two independent printheads (Independent Dual Extrusion) following changes are needed:


  • 1 x xcarriage_short_hmount_motor_2020-endstop-idex-left
  • 1 x xcarriage_short_hmount_motor_2020-idex-right
  • 1 x xcarriage_beltmount_2020-idex
  • 1 x pulley_holder


  • 1x Nema 17 42-45Nm (39-40mm height) with 1m wires
  • belt ~110cm GT2 6mm
  • 1 x pulley
  • 1 x idler

As soon I tested this option I will document it in more details, like electronics, changes in firmware, slicer settings etc.


3D Printing: Ashtar K Printer: Electronics


  • 2018/12/05: added MKS Gen L as alternative, for Ashtar C #1
  • 2018/11/25: added RAMPS 1.4 as alternative, for Ashtar K #2
  • 2018/08/28: initial version with CTC DIY I3 Kit

Sourcing Parts

The past months (2018/08) I began to use Aliexpress for ordering electronics – even prior going into 3d printing – and the past weeks my development cycles pretty much were depending on the 20-25 days delay until items arrived from China to Switzerland – and one develops some skill to anticipate what one would require as next – but some things only become known once you really tested parts thoroughly.

Anyway, the CTC DIY I3 Pro B (Geeetech DIY I3 Pro B clone) was still sold via Ebay (2018/08), at a price as low as EUR 80 incl. shipment, which is a true bargain.

Aliexpress (2018/08):

  • MKS Gen L mainboard (incl. drivers) with LCD (with dialer), 200×200 heatbed, end stops, cables: EUR 50
  • PSU 12V 240W: EUR 20
  • 5x Nema 17 45Nm stepper motors: EUR 35
  • Total: EUR 105 (without endstops and various cables to connect all together)

CTC DIY I3 Pro B Kit (2018/08):

  • Anet 1.0 mainboard, with 2 Lines LCD (4 buttons), 200×200 heatbed, end stop, cables, PSU 12V 240W, 5x Nema 17 45Nm stepper motors
  • Total EUR 80 (all cables included)

So I decided to get another CTC DIY to source the parts in one go, and likely upgrade later with individually sourced parts to have dual extruder motors (two color or material printing).

In 2018/11, when I started to build a second Ashtar K 38x30x33 #2 I checked Ebay with following prices:

Ebay (2018/11):

  • MKS Gen L: EUR 28
    • MKS Gen L mainboard: EUR 16
    • 5x A4988 drivers: EUR 6
    • RepRap Full Graphic LCD: EUR 11
  • RAMPS 1.4 with Arduino Mega, 5x A4988 drivers, Full Graphic LCD: EUR 28
  • 5x Nema 17 40-50Nm stepper motors with cables: EUR 26-35
  • PSU 12V 240W: EUR 20
  • Total EUR 74 – 83 (missing: endstops and various cables to connect all)

Burning Bootloader on Anet 1.0 Board

For now I use an “Anet V1.0” controller board (Atmel 1284P), as part of a “CTC DIY Kit” as mentioned, and it required some preparation:

  1. using Arduino Uno R3 (clone) and upload “Arduino ISP”
  2. attach Anet V1.0 board (detach all other cables) to Uno R3 bootloader-burning
  3. run “Burning Bootloader” with “Arduino as ISP” as writer
  4. downloading Marlin and edit main Configuration.h (not yet published) to match my specifications
  5. upload new firmware Marlin to “Anet V1.0” via USB upload

RAMPS 1.4 with RepRap Discount Full Graphic LCD

RAMPS 1.4 Schematic + PinoutFor the 2nd Ashtar K 3D Printer I used (2018/11) RAMPS 1.4 combo with Arduino Mega, which was easy to upload new firmware. RAMPS 1.4 is Open Hardware, the entire schematic and pinout is available or download diagram with pinout as one image (same as on the side) – but it’s also a hassle to plug correctly as the board plug descriptions are tiny or covered by parts so one has to consult documentation in details, and there many ways to do wrong (reverse or misalign plugs) and most of these can and do damage either the RAMPS 1.4 shield and/or the Arduino Mega beneath, including misaligning the endstops.


  • using C and NC on the endstop and the board (power connector on the left) above the 2x Z motor connectors: XMIN, XMAX, YMIN, XMAX, ZMIN, XMAX, each:
    • top (Signal) -> C
    • middle (Ground) -> NC
    • bottom (5V) -> empty

while waiting for proper endstops to arrive, I salvaged microswitches from a faulty computer mouse to work as endstops

Marlin Firmware Changes

  • Configuration.h:
  • Configuration_adv.h:
    • commented out #define MENU_HOLLOW_FRAME so selected item is inversed
  • pin_RAMPS.h:
    • see #if ENABLED(REPRAP_DISCOUNT_SMART_CONTROLLER) and the following #if ENABLED(CR10_STOCKDISPLAY) after the #else check BTN_EN1 and BTN_EN2 and reverse the pins (31 <-> 33) so clockwise dialing goes down (and not up).



  • Configuration.h:

As far I can tell the end-stops take DuPont females and pin order is the same as with RAMPS 1.4, but orientation is crucial – otherwise the GND and VCC is shorted.

The plan is to use this board for Ashtar C #1.


I update this post as I go along.

3D Printing: Ashtar K Printer: Printing #2

Upgrading X Motor Mount

Printing new X motor mount on CTC DIY I3, and replacing it on the new Ashtar K: CTC DIY I3 prints quite reliably – there is nothing to clean up – the piece I attach it right away:

Ashtar K lacked a proper print surface (before I received the black sticker surface), otherwise I would have printed the piece on itself.

Black Sticker as Bed Surface

The 400×400 black sticker arrived, and I cut it into 400x300mm and put it on the mirror – which worked well, and so far I can tell the surface is very very flat, much better than on alu heat bed.

bed-corner-detailCurrent bed setup (top to bottom):

  • 400x300mm black sticker (“frosted sticker”), apprx. 0.6mm thick
  • 400x300mm 3mm thick mirror
  • 210x210mm 12V alu heat bed
  • various cork patches under heat bed
  • 10mm light black foam material
  • 420x320mm 6mm plywood (white painted) as Y carriage
    • 4x printed corner mounts holding 3.7mm thick sticker/mirror combo
    • M3 x 35
    • M3 washer (below printed corner mount)
    • Spring (20mm long, ~10mm OD, 1mm wire)
    • M3 washer
    • printed knob (below plywood), 30mm OD, 8mm thick, M3 nut inserted

Now that I have a good print surface I finally printed pieces for itself.

Mounting the 400×300 bed (OSB 6mm, white painted) with 200×200 heat bed (which I hardly use, as I started to print on cold bed):

I currently use the white PU steel enhanced GT2 belts, and it produces hard edges, some ghosting, but more precise prints than the black rubber GT2 belts which just stretch too much – I have to research this more closely – about the type of reinforcement and the use with more heavy beds (Y carriage).

Just for the record regarding Y carriage (2018/09):

420×320 carriage:

  • 4mm plywood flexes, but has been quite flat – not recommended
  • 6mm plywood hardly flexes, but has been hard to buy truly flat – and so far my attempt to flatten it did not work well – not recommend unless it’s flat
  • 6mm OSB quite flat, does not flex much (3 or 4 sliders) – recommended

320×320 carriage (for 300×300 bed):

  • 4mm plywood works (3 sliders, 4 sliders recommended)
  • 6mm plywood works (3 sliders, 4 sliders possible if plywood is truly flat <0.2mm difference)
  • 6mm OSB quite flat, doesn’t flex (not yet tested)

Just to explain my thought or decision process for my setup:

  • the mirror should not be bend (of course)
  • the support structure should not be the edge mounts, but the foam in between
  • the carriage can be bent, but not flex
  • revelation: already bent means the springs with screws might extend the bent further with a flexing carriage, and not counter act – as the mirror should stay flat

so, even though the springs/screws and edge mount can adjust, the carriage should be fairly flat, and not flex at all – this way the edge mounts holding the glass/mirror only stabilize position. Main force to hold the glass/mirror, for my setup, is the foam in between. So, there is no “spring” induced vibration back/forth introduced, but the foam neutralizes such vibrations – and hardly adds weight/inertia.

Sliders & Belt Mount Positions

Top view with see-through (best mark “0,0” on both sides to keep reference).


400×300 vs 300×300 Bed

Originally I focused on 300×300 bed at least, with some tweaking and narrow X carriage I was able to reach 380×300 printable bed, so it was suitable to use 400×300 plate as well.

It takes me about 5min to mount new bed, downgrade from 400×300 to 300×300:

Changes needed:

  • move Y endstop switch from left to Y carriage extrusion to the right side
  • Y stopper mounted on the bed needs to placed accordingly

With 300×300 bed the 0,0 is now plenty outside of the bed, with 400×300 the 0,0 is near the printed bed mount.

Setting Offsets for 300×300 bed

With 300×300 bed the 0,0 is now +32mm to right and +25mm deeper, hence the Gcode M206 is set like this:

M206 X-32 Y-25

H Plate/Module as X Carriage

The 3 wheels module riding on the 2020 alu extrusion I named “V plate” due the shape, the 4 wheels module “H plate” providing more stability or rigidity for use as X axis carriage, when the nozzle runs over slightly unclean extrusion and tilts upside. For the X carriage I choose a narrow (48mm wide hole-to-hole) version:

It’s the first/early version, the adjustment screws (M3x10) are very or too close to the bed for my taste, next version will use M3x8 and give more spacing. I like to keep the hotend close to the X carriage so not to waste Z space.

Additionally I made a new hotend mount so it would use another mounting holes than belt mount:

But now it’s harder to reach the hotend mount holes due the part cooler – oh well.

After few days, I noticed one wheel stopped to turn, no longer touching the alu extrusion – I guess the carriage slowly balanced itself and triangulized, no longer use the 4th wheel. I re-tighten the 4th wheel gently so it would roll again.

Z Couplers: To Wobble or Not To Wobble

As I posted before, I suspect the Z couplers to be the main source for Z wobbles, as the threaded rods may look and are cheap but they are mostly straight – the wobble actually is caused, after close observation, from the misalignment which happens when you screw the metal couplers on, in particular if you attached the lead screw or threaded rod with uneven surface – the thightening screws may or may not attach cleanly – and thereby push the Z rods out of the center of the Z stepper motor – when the Z thread holding the X axis is fixed, the resulting wobble is worse at low Z heights; and if you fasten the Z rods at the top, the wobble gets even worse.


A simple remedy I found is to use printed couplers, two pieces which are screwed together with 4x M3 screws and nuts, a bit of an overkill, and a bit time consuming to fasten: incrementally tighten each screw over and over until all are tight – but I think it’s worth it: the two halves attach evenly and the PLA or ABS or whatever you printed the couplers, is soft enough so the threads of the Z rods carve themselves evenly into the coupler, and self center themselves this way – result is better centric attachment of the Z rods, not perfect but acceptable and better than poorly manufactured metal couplers.


As mentioned before, I switched from M8 to M6 for the Z axis the M6 provides 1mm movement per full turn, and is more flexible to even out out-of-center wobbles, better than the stiffer M8 threaded rod. If using couplers at all, and likely introduce out-of-center mounting, rather use a more flexible lead-screw or threaded rod than a stiffer one.

3D Printing: Ashtar K Printer: Printing #1

It has been a few days (2018/09/04), since Ashtar K happen to be able to print, the heat bed still unfinished, some prints illustrated below are done with no leveling screws, the mirror just taped on the Y carriage – don’t laugh – later prints I had proper carriage and leveling screws included; a proper build surface I still wait for in the mail (400×400 black sticker to be cut in shape) – anyway, here some of the early prints:

40mm XYZ Calibration Cube

The original 20mm XYZ Calibration Cube is printed in 8 mins with 0.5mm nozzle at 0.4mm layer height, and so I thought, let’s print it 2x the size with 0.4mm layer height, merely 40 mins later this:

The quality is . . . impressive, this is just tuning a single day – mostly on the extrusion factor and print temperature – and this is what I hoped for: XYZ positioning almost flawless: there is slight ghosting on X axis (which could be resolved) shown on “Y”, and Y axis shown on the “X” which is fine, given the size of the bed and its weight and inertia this is OK.

I had to increase print temperature +20C from 200C to 220C for 80mm/s infill while printing with the 0.5mm nozzle, I otherwise would hear clicking from the extrusion stepper motor missing steps. I still use the classic E3D V6 (clone) heat block, not the Volcano heat block.

20mm Calibration Cube: Different Layer Heights

Printed with 0.5mm nozzle, left-to-right: 0.1mm, 0.2mm, 0.3mm and 0.4mm layer height, 60mm/s (80mm/s infill), 200C first layer, rest with 210C, pink glowing PLA by Sienoc.


X Carriage: Sliders vs Wheels

While printing with slider carriage on the X axis, I noticed increased stuttering, and regardless if I thighten or loosen the grip, the stuttering remained, and slight horizontal tilt occured when changing direction on the X axis resulting in too narrow prints in X dimension.


X carriage with white nylon wheels (23.mm OD / 7.3mm width)

So, I changed back to wheel-based carriage, first again 23/7.3 white nylon wheels (right photo), but when I printed “L” shape with 200mm length in X and Y and 1mm height in Z, I noticed slight Z sinus form as I saw before – while it rolled nicely, there was a wobble . . . and so I printed a new carriage which holds the black OpenRail Double V (clone) 24.4mm OD / 11mm width, and put it on the X carriage:


X carriage with double V black wheels 24.4mm OD / 11mm width

A brief overview of the carriages riding on 2020 T slot (B-Type) alu extrusion:



Sliders: on the X axis it did not last, the stuttering was not avoidable; the issue is that the X carriage is one of the hardest axis of the Prusa i3 style geometry to handle: it isn’t just X directional rail, but also pressure on the Z with the weight of the print head, and running over overextruded filament – and it’s hard to pull the X carriage perfectly without the carriage have some vertical tilt as well – anyway, I still use the slider option on the Y carriage – and works fine so far.

White nylon 23/7.3mm wheel: rolls nicely, but gives wobble to the Z height when used on X carriage, apprx. 1mm, also doesn’t stay vertical upright, but tilts a bit with pressure – when the print head moves over overextruded print it doesn’t level it, but jumps over it. I currently use white nylon wheels on the Z carriage successfully.

Black double V delrin 24.4/11mm wheel

  • groove use: rolls very nicely, gives no wobble, and stays vertical. The next days and weeks will tell if the double V wheels do last on the T slot alu profiles – they are meant on proper V slot alu extrusions.
  • diagonal/edge use: rolls very nicely too, but surprisingly gives less tilt rigidity than groove use – the T slot 6 (B-Type) gives less surface at supposed 90deg edge, but is rather 85deg

Z Axis Linearity

As you may have read in the other post(s), I use M6 threaded rods, it’s flexible and rather aligns with the Z axis itself, whereas M8 is stiffer and misalignment – which by the way doesn’t come from the rod itself, but the mounting with the couplers – won’t impose on the X carriage – this is my own view and it happens to come true again with Ashtar K, after I changed my cheap CTC DIY I3 also to M6.

Now, the 1m long M6 threaded rod, enough for two Z axis each 500mm long, did just cost EUR 0.70, made in China but purchased locally in Germany, and the nylon wheel-based Z carriage happen to work perfectly so far – I expected some slight sinus wobble imposed by the nylon wheels as I encountered on the X carriage, but it seems when there is little force applied on the wheel the carriage works good enough.

Printing 330mm high 10mm diameter cylinder (with slider-based X carriage):

There was some slight extrusion inconsistencies, this is likely due the material, an broken vacuum seal of a newly purchased glowing pink PLA roll, actually, after watching the 2nd print closely, either GCode errors or USB transmission errors, as some segments of the circle (layer of a cylinder) is repeated for some unknown reason and so overextrusion occurs there (needs proper investigation)  – but the linearity is very good, and no Z wobble whatsoever.

Loopy Egg

60mm height “loopy egg”, printed with 0.5mm nozzle, 0.4mm layer height:

The “loopy egg” is a good benchmark for retraction settings, and stressing the extruder motor as the short segments making up the loops require a lot of push / pull on the filament. There was still some slight stringing, which I knew will happen, as the retraction is just set to 2mm at 35mm/s giving very good results. More prints will tell if I can stay with these retraction numbers.

Fighting Heat Creep

I currently use E3D V6 clones as hotends, one with 30mm “original” fan, and one with 40mm fan. And with the “original” smaller 30mm fan I experienced frequent clogging up within the hotend: some of the filament melted above the heat break and expanded and blocked any further extrusion – that happened now several times.

I tried to reduce the extrusion temperature but which caused decline of print quality. After trying to determine the root cause of the problem, I concluded that it was heat creep and insufficient cooling above the heat break, hence, the hotend fan, and I switched to 40mm fan – and the clogging disappeared, not quite yet . . . update follows.


30mm Fan (front facing) with 5015 Fan Fang (top)


40mm Fan (front facing) with 5015 Fan Fang (top)

Although both setups look very alike, I had to print out another fan fang which can contain 40mm fan.

Five Platonics

My favorite geometrical forms – aside the sphere – the sacred set:

Mirror as Bed

I’ve got 40cm x 30cm mirror which became my bed base, underneath with some tight springs some 6mm multilayered plywood, which was warped 2-3mm on the edge – but it didn’t matter (much). The mirror was the reference, and the Y carriage had to hold the mirror. That turned out to work very well: the mirror is truly flat, I leveled the bed once for tilting, after a week, I only had to tweak the Z endstop screw slightly, but I didn’t touch the screws mounting the mirrors to re-level the bed anymore.

So, using the mirror as bed worked well so far due the flatness – but the glass didn’t turn out to print good on it, the printed parts often detached before finishing the print, and ruin the print – so I used blue tape sheet as temporary solution until the black sticker arrives which I already use on the other 3d printer.


As I designed Ashtar K with larger build volume, I choose 0.5mm nozzle at least, and the max 0.4mm layer really pays off in regards of print speed, while still maintain some details – I’m quite pleased so far.

3D Printing: Ashtar K: It’s Alive ;-)

Well, after merely 3 months (2018/06/06) when I started to code the first lines of OpenSCAD to develop a series of parametric Prusa i3-like designs, and few weeks ago decided to go with the “K” series with 2020 alu profiles: simple 11x 500mm beam T slot (B-Type) alu profiles – the 1st prototype happen to print the 20mm XYZ Calibration Cube as of 2018/08/27:

The bed is very temporarly fasten with tape, as I haven’t decided on the actual details of the bed mounting yet and leveling details – but I wanted to see how well the mechanics already works – and it performed quite well so far.

1st print came out mediocre, when I realized I had to tighten X and Y belts more, 2nd print came out much better; 0.5mm nozzle with 0.4mm layer height, merely printed in 8mins with 60mm/s print speed and 80mm/s 20% infill:

And just for the fun of it, 0.2mm layer height with 0.5mm nozzle, at 70mm/s:

Incredible quality: X and Y surface very good, some inconsistency at “X”, on the “Y” side some slight ghosting; but most surprising is the edges on the Z axis – I operate with a simple M6 threaded rod and M6 nut – that’s all – moving nylon wheel-based carriage up and down – sure, I require to print more tests, in particular larger prints to really see how well all axis print up to 300mm.

I had to use blue tape on the mirror otherwise PLA would not stick – eventually I will use the black sticker as I used for the CTC DIY printer which worked quite well.

Nylon Wheels vs Sliders

The past 2-3 weeks, while waiting the nylon wheels to arrive, I decided to check alternatives such as sliders with PTFE tubes – and this paid off: the nylon wheels 23.0mm OD with 7.3mm width sit quite nicely into the T slot (B-type) but when used in real life, like with X carriage, I had some sinus wobble in the vertical – apprx. 0.5mm to 1mm – way too much. So, I exchanged the wheel-based X carriage with the slider-based carriage, remounted the hotend with Bowden setup, and after 5mins the exchange was done:

Current setup:

  • X axis: slider-based carriage, holding on top and bottom side with 2 tightening screws
  • Y axis: simple sliders (just sitting on the groove)
  • Z axis: nylon wheel (23.0/7.3mm) based carriage

The next days and weeks I will review my options:

  • slider-based carriage with
    • 1 axis support or
    • 2 axis support
  • wheel-based carriage with
    • nylon wheels 23.0/7.3 and 23.0/7.0
    • double V wheels

both on T slot alu extrusion – I know ideally would be proper V slot alu extrusions, but I like to find out how good it works with the easily available T slot extrusions. Worst case is, I have to use on X and perhaps Z axis proper V slot alu extrusions, on the Y axis it seems the simple sliders (just a block) work fine.

0.5mm Nozzle

Since I deal with nearly 3x the bed surface compared to 200×200 I thought I have to use a bigger nozzle as well, as a bigger build volume would imply larger objects to be printed. The increase from 0.4mm to 0.5mm diameter also implies 1.5x or +50% more material being extruded and I still desire to print with 60mm/s average with 80mm/s infill – this means I have to test well the hotend performs with that speed and higher throughput of material.


Current specifications of Ashtar K 3d printer:

  • 380 x 300 x 320 mm build volume (400 x 300 bed)
  • E3D V6 clone hotend
  • 0.5mm nozzle
  • Anet 1.0 controller board
  • 210 x 210mm 12V heatbed


  • bed mounting & leveling
  • 300×300 or 400×300 220V heatbed
  • proper print surface (likely black sticker 300×300 or 400×300)
  • improving cable management:
    • Y carriage and heatbed with proper cable chain
    • deciding on position of LCD display

3D Printing: Ashtar K Printer: Motor & Belts

Brief update of motors, belts, threaded rods and end stops mounted:

X Axis

I switched from slider based carriage to the nylon wheel (23.0mm OD, 7.3mm width) based carriage (X and Z axis), apprx. 120cm belt length.


Y Axis Belt

Apprx. 90cm belt length – with some considered cutting X + Y ~ 2m belt length.

This part was tricky – the parts are glued to bottom of the wooden carriage:

  1. mark the positions of the sliders (left: 65mm distance from top and bottom, left: center of top/bottom)
  2. glue 2x sliders on the left (where the Y motor is mounted)
  3. glue 1 slider on the right side
  4. put carriage on the rails, avoid any horizontal movement, push it slightly down (a slight snapping you sense from the sliders)
  5. let it rest (don’t touch or move it) for 30min – glue must dry
  6. move Y carriage gently forward & backward; if there is slight resistance then
    1. loosen all screws of the right 2020 beam so you can move it sideways
    2. then move carriage forward and backward and let the beam slightly find its new position
    3. when the carriage moves gently without resistance
    4. fasten the screws gently
    5. retest and if it’s still resitance, repeat procedure
    6. this is a bit tedious work, but worth it

This part is to do next (once I concluded those PTFE pipe chunk based sliders do their job well):

  1. drill holes and use Zip ties to fasten sliders
  2. glue Y carriage belt mount, let it dry
  3. mount GT2 belt to carriage belt mount
  4. fasten Y carriage belt mount with screws: drill holes from the bottom side


I will make some short videos of putting the carriage together and mounting it – it’s quite fast to attach and detach with those sliders (no screws to unfasten).

Z Axis

I extended the corner brackets so the Z stepper motors can be inserted, this weakens the part but saves quite a lot of space and hides the threaded rods nicely behind the 2020 Z beams. I might work on those brackets later to increase rigidity again.

Currently I use M6 threaded rods for the Z axis, one cycle gives 1mm height change.

X, Y, Z Motion & Homing

Flashing the Anet 1.0 board (which I currently use) with latest Marlin, this was required:

  • using Arduino Uno R3 (clone), installing Arduino ISP on it
  • cabling Uno R3 with Anet board (Uno powers Anet board with 5V, all stepper motors or power detached)
  • installing Bootloader (“Burning Bootloader”) with “Arduino as ISP” as writer
  • downloading latest Marlin, copying Anet Configuration.h and starting to change it

Finally, after hours fiddling around (bad install of Arduino failed to compile and/or upload anything to my Uno R3) the LCD display greeted with “Marlin 1.1.8” 🙂

Moving X, Y and Z axis briefly, 380 x 300 x 320 build volume with the current V carriage with 23mm OD, 7.3mm width nylon wheels – no extruder and no bed heating and leveling yet.

3D Printing: Ashtar K Printer: Carriages (X, Y, Z)

State: Work in progress

As I finished the frame, I focused on the carriages:

  • X carriage: moving left to right with the hotend with Bowden setup to keep it light: Wheel-based Carriage
  • Y carriage: moving bed forward and backward, relatively heavy with 400×300 bed with a mirror to ensure flatness: leaning toward Sliding Carriage
  • Z carriage: moving up and down with X carriage: Wheel-based Carriage

XZ Frame with X- and Z-Carriages

I made some tests with sliding carriage (composed with PTFE tubes), and finally the Nylon wheels arrived and I began to review two kinds of wheels:

  • 23mm OD, 7.3mm width: even it’s wider it sits better in the T slot 2020 alu extrusion
  • 23mm OD, 7.0mm width: is bit more narrow, but doesn’t sit well on the extrusion

So, I put the 23/7.3 nylon wheel on the V plate to compose a V carriage, and applied to X and Z axis:

Y Carriage

The nylon wheels work very well, given the fine-tuning capability, whereas the sliding approach with 2 axis support (PTFE tubes in sliding direction plus vertical to stay in line) doesn’t give tuning capability.

Currently I lean toward the more simple slider (white PLA) with 2 axis stabilization, as with the wheel-based carriage too much vertical force will be applied to the wheel in a perpendicular manner and wear the wheels rather fast.

One of the challenges is to mount three such sliders on the bed – two can mounted quite freely (with margin of 1-2mm) whereas the 3rd slider needs to be mounted very precise.

I update this post as I progress.

3D Printing: Ashtar K Printer: Frame

State: Work in progress

Building 3D Printer Ashtar K starting with the frame using 2020 T slot 6 alu extrusions, changing design slightly from 9x 500mm to 11x 500mm as early tests showed the XZ frame wasn’t stable enough toward Y bed – so two additional beams (later photos in the series) to make XZ frame sturdy toward the bed.

and the current state more or less:


While waiting for wheels to arrive I thought to make some tests with sliders composed with PTFE tubes (4mm and 3mm in diameter) – I might actually use them in the X axis and Y axis:

The building volume with the 500mm beams can be stretched to 380 x 300 x 360mm, if the X carriage is short(er) – this means, the bed can be 400 x 300.

3D Printing: Sliding on Alu Extrusions

State: Early draft, work in progress and likely will receive updates.


  • 2018/08/15: Added Slider with PTFE tube inlets with 1 and 2 axis support with photos and brief test video
  • 2018/08/05: First overview with a 3 approaches

While waiting for the shipment to arrive, I thought to study some of the alternatives to wheels on alu extrusions, such as sliders.

2020 Nut 6 B - 999991_1

Nylon 2020 Slider

gleiter-glatt-b-typ-nut-6_3Commercially manufactured, apprx. cost EUR 2.50 per piece, sold in 10 pieces bag.






3D Printed Sliders

Simple Slider

A simple replicate of one of the simple 2020 sliders:

The sliding nose is 5.8mm wide. Ideally this would be printed in nylon; PLA might work as well but tends to stick more and grease or oil is required therefore.


  • print samples and measure friction with PLA
  • publish model

Slider (2 Sides) with PTFE tubes

Improving the simple slider with 10mm long 4mm PTFE chunks to decrease surface and use proper material for sliding:


and in use for the Y axis of a Prusa i3 like style:


and a small improvement to take care of the 2nd axis as well (reducing 2nd axis wiggle):

Screenshot from 2018-08-15 06-21-15


and then mounting them with a carriage together with M3 screws to control tightness:

and a brief test:

Slider (4 Sides) Carriage with PTFE tubes

A bit more complex using PTFE tubes on all 4 sides:

each inner side has 8 tube chunk insets, which gives you the variable option:

  • 4 chunks (a 10mm) x 4 sides = 160mm total
  • 8 chunks (a 10mm) x 4 sides = 320mm total
  • 12 chunks (a 10mm) x 4 sides = 480mm total
  • 16 chunks (a 10mm) x 4 sides = 640mm total

The OpenSCAD module takes parameters such as length of the carriage and the diameter of the PTFE tube (e.g. 3mm or 4mm), default length 60mm.

And the adjustable version with 75mm width looks like this:

which breaks the one surface apart with the mounting hole; if a plate would use all 4 holes that side would become non-adjustable that way – so this isn’t ideal, but perhaps work for single side use.

A possible application as X carriage and two Z carriages in a Prusa i3 use case:



  • print model and make actual physical tests, measure friction of the possible options
  • publish model



End of Page

3D Printer Ashtar K

Status: fully functional and fine-tuned, two printers in use, my working horses

Ashtar K
Ashtar K IDEX – Draft


  • 2021/02/11: Multiple Switching Extrusion (MSE), Rotating Tilted Nozzle (RTN) and Penta Axis (PAX) Option added (drafts)
  • 2021/01/14: Option for IDEX (Independent Dual Extrusion), early draft (not yet tested)
  • 2019/09/02: Modification of routing belt within 2020 alu profile
  • 2019/03/04: Updated photos and removed outdated parts
  • 2018/12/10: Added Bowden extruder photos and BOM
  • 2018/11/15: 2nd build of “Ashtar K #2” also 380x330x300 with 500mm alu extrusions
  • 2018/10/31: Z axis modules assembly detailed photos.
  • 2018/10/28: More details on BOM (Bill of Materials): printed and non-printed parts
  • 2018/09/30: More details on Y carriage / bed, short video of mounting bed.
  • 2018/08/27: It’s alive – means it prints . . .
  • 2018/08/26: Partial functional, X, Y and Z motors and belts and threaded rods mounted with end stopper, board been flashed with Marlin 1.1.8
  • 2018/08/24: More photos about XZ frame bracket with integrated Z motor mount, Y belt mount and sliders
  • 2018/08/20: Short video testing X and Z axis with nylon wheel based carriages
  • 2018/08/15: Added photos of composing the frame (XZ + Y) and changing design slightly to add 2 more beams so XZ frame is more sturdy, early tests with sliders, as alternative with wheel based carriages
  • 2018/08/01: More details, extruder motor on the right side with belt idler mount, short video showing some details.
  • 2018/07/30: Updated images, more examples of prototyping V modules
  • 2018/07/21: Published with few drawings, short part list.


In summer 2018 I pondered on a parametric Prusa i3 3d printer designs, composed with 2020, 2040 aluminium extrusions / profile, hereby I document the development here.

The Ashtar W Series and Ashtar T Series are fully parametric, from 200mm^3 to 500mm^3 build volume, whereas this Ashtar K Series focuses on single beam length construction with 2020 alu extrusions.

Ashtar K #1 (right, white) and #2 (left, pink), both 380x300x330 build volune, but having different build plates

Parametric Designing

Unlike traditional CAD (Computed Aided Design) sketched constructions, a coded parametric design is actually textual coded a design, defining which parts depend on which, and align according some variables, which can be changed. In this case, the input is the building volume X, Y and Z, and all parts are calculated accordingly, using OpenSCAD as programming language.

Following notion has been introduced:

  • X, Y and Z are the starting point, the printable volume
  • IX, IY, and IZ are the inner dimension of the construction needed to make X, Y and Z build volume work, hence, IX, IY and IZ are greater than X, Y and Z
  • all constructions depends on IX, IY and IZ
  • XE, YE and ZE are the position of hotend ranging between 0..X, 0..Y and 0..Z
  • XP, YP and ZP is the calculated position of the hotend in physical space

These notions, in retrospect, allowed me to code all the different printer types: Ashtar K (Prusa i3), Ashtar C (CoreXY), Ashtar M (Prusa i3 MG), Ashtar D (Classic XY) coherently.

Ashtar K: 500mm 2020 Extrusions as Rails

This is a single size design optimized: 300(-380) x 300 x 360mm build volume, composed by 11x 2020 500mm B-type or V-slot beams:


Bottom view:


The rollers on the Y axis can be likely reduced to minimum of 3 total, instead of 9 (3×3), it really depends how well the rollers have a grip on the extrusions. Majority of the printed parts are custom. I settled with DIY sliders with small PTFE tubes instead, they were simpler and turned out reliable enough for my use case, see below “Y Carriage Slider”.

The Y axis is quite short to match 500mm beam length, and the Y bed fits barely as you can see in this bottom view, but it should work:


Moveable V Modules

The V modules, composed by 2x V plates, which holds the wheels running on the alu extrusion, I document separately at 3D Printing: Wheels on Alu Extrusions and is used:

  • 2x Z axis motion
  • 1x X axis motion
  • 3x Y axis motion (perhaps a dedicated module to reduce amount of wheels) or
  • 3x or 4x Y axis sliders


V Module X Axis

As first I mounted existing direct drive extruder piece to the module, although due the thin 2020 profile I likely have to run it with Bowden setup to make sure the moving extruder is light enough.

Small belt mount, 1st version is one sided, 2nd version goes both ways to be more flexible:

V Module Z Axis

Z Axis V module is a bit more complex, it takes the X axis beam and the Z axis leadscrew or threaded rod, and the X motor mount:

Slider-based Carriages

Aside of wheel-based carriage, I thought of trying and playing with some slider-based carriages as well:

for more details see my blog post on 3D Printing: Sliding on Alu Extrusions. It eventually didn’t work that well, with time it became wobbling, and the friction increased – so I switched to wheel-based V modules.


Some photos of early tests with building the frame. I changed the frame design an add two more beams to stabilize the XZ frame with the Y bed more; using 11x 500mm beams now – and some strong bracket at the bottom:


X Axis Module

Two options are available:

  • 2020 T-Slot 6 (B-Type): using 3x Nylon wheels 23.0 OD / 7.3 wide
  • 2020 V-Slot 6: using 3 or 4x OpenBuild 24.4 OD / 11 wide V wheels

The V-Slot beam is more suitable as the X carriage will be more stable and sturdy when printing – yet, V-Slot 2020 beams aren’t easily available or with high shipment costs.

Four options I tried: the 1st with a slider worked only briefly, then 2nd I switched to white Nylon wheels which wasn’t stable enough but wobbled in Z a bit on T-Slot beam, the 3rd was 3x wheel V module, or the 4x wheel H module on V-Slot which worked best.

Z Axis Modules

Two V modules (each with 2 plates) assembly for 2020 T slot 6 B-Type beams, per module:

  • 3 x M5 x 30
  • 3 x M5 nuts
  • 4 + 2 + 2 M3 nuts (4 front insets, 2 back insets, and 2 for adjustment screws)
  • 2 x M3 x 14 or x 16 (adjustment screws)
  • 3 x Nylon wheels 23.0 OD / 7.3 wide (do not use 23.0/7.0 wheels, but 23.0/7.3)

X, Y and Z Axis Motors

All motors mounted with belts and threaded rods:

and all 3 axis in motion (without extruder and without bed heating/leveling):

and early tests show with the nylon wheel (23.0mm OD, 7.3mm width) based carriage a build volume of 380 x 300 (+10mm outside of bed) x 320mm.

Other carriage, e.g. the slider based, might result in smaller or bigger build volume.

Controller Board

For now I use an Anet 1.0 controller board (as part of a “CTC DIY Kit”), and it required some preparation:

  1. using Arduino Uno R3 (clone) and upload “Arduino ISP”
  2. attach Anet 1.0 board (detach all other cables) to Uno R3 bootloader-burning
  3. run “Burning Bootloader” with “Arduino as ISP” as writer
  4. downloading Marlin and edit main Configuration.h to match my specifications
  5. upload new firmware Marlin to Anet 1.0 via USB upload

I mounted the board first in the farther left corner (in the photo), but the Z stepper motor new mount required to move the board in front of the XZ frame on the left side.  The position and casing for the LCD display I haven’t decided yet.

Y Carriage

Current bed setup (top to bottom):

  • 400x300mm black sticker (“frosted sticker”), apprx. 0.6mm thick
  • 400x300mm 3mm thick mirror
  • 210x210mm 12V alu heat bed (optional)
  • various cork patches under heat bed
  • 10mm light black foam material
  • bed-corner-detail420x320mm 6mm OSB (white painted) as Y carriage
    • 4x printed corner mounts holding 3.7mm thick sticker/mirror combo
    • M3 x 35
    • M3 washer (below printed corner mount)
    • Spring (20mm long, ~10mm OD, 1mm wire), compressed to 10mm
    • M3 washer
    • printed knob (below plywood/OSB), 30mm OD, 8mm thick, M3 nut inserted

I currently use the white PU steel enhanced GT2 belts, and it produces hard edges, some ghosting, but more precise prints than the black rubber GT2 belts which just stretch too much – I have to research this more closely – about the type of reinforcement and the use with more heavy beds (Y carriage).

420×320 carriage:

  • 4mm plywood flexes, but has been quite flat – not recommended
  • 6mm plywood hardly flexes, but has been hard to buy truly flat – and so far my attempt to flatten it did not work well – not recommend unless it’s flat
  • 6mm OSB quite flat, does not flex much (3 or 4 sliders) – recommended

320×320 carriage (for 300×300 bed):

  • 4mm plywood works (3 sliders, 4 sliders recommended)
  • 6mm plywood works (3 sliders, 4 sliders possible if plywood is truly flat <0.2mm difference)
  • 6mm OSB quite flat, doesn’t flex (not yet tested)

Just to explain my thought or decision process for my setup:

  • the mirror should not be bend (of course)
  • the support structure should not be the edge mounts, but the foam in between
  • the carriage can be bent, but not flex
  • revelation: already bent means the springs with screws might extend the bent further with a flexing carriage, and not counter act – as the mirror should stay flat

Sliders & Belt Mount Positions

Top view with see-through (best mark “0,0” on both sides so you keep proper reference) – if your carriage is truly flat, choose 4 sliders, otherwise 3 sliders.


Bowden Extruder

After few weeks I decided to do my own extruder, adapting the design of the “Compact Extruder” which has low complexity and low amount of parts to achieve simple extruder functionality; here my redesign:


and in a functional state:

It’s published at thing:3265864, it’s based on 625ZZ bearing:

  • 625ZZ bearing (16mm OD, 5mm ID)
  • M5x14: mounting bearing
  • 2x M3x25: one to attach handle, another to hold spring
  • 2x M3x8: mounting to stepper motor
  • M3 nut: insert into slot
  • M3 washer: to hold spring
  • 3-8mm OD 20mm long spring
  • hobbed gear OD 11mm
  • 4mm OD / 2mm ID PTFE for filament guides
  • PC4-M6 for outgoing Bowden tube


In Action

After 3 months (2018/06 – 2018/08), since I started to code the first OpenSCAD lines, the “K” prototype happen to print the 20mm XYZ Calibration Cube:

And roughly 2 months later Ashtar K #2 (with RAMPS 1.4 board) was printing as well, on a smaller 300x300mm unheated bed:


  • proper bed mounting and leveling: done
  • bed heating: running without heat bed
  • better cable management (in particular heatbed / Y carriage)
  • release sources
  • complete instructions
    • complete part list (printed / non-printed)


This is a preliminary part list (no files yet published):


Most of the printed parts
  • V plates (2 plates = 1 module) with 3 x or 4 x M5 x 30:
    Note: for each axis the plates must be printed with the same print settings to be symmetric when assembled, recommended setting: 1.5mm top and bottom thickness and wall thickness, layer height ~60% or less of nozzle diameter
    • X module (with 3 or 4 x black OpenWheels 24.4/11):
      • short 3 wheel carriage:
        • 1x v_plate-2020-double-v-244-110-48w-a 
        • 1x v_plate-2020-double-v-244-110-48w-b
      • short 4 wheel carriage:
        • 1x h_plate-2020-double-v-244-110-48w-a
        • 1x h_plate-2020-double-v-244-110-48w-b
    • 2 x Z modules (with 3 x white Nylon 23/7.3 wheels) each
      • 3 wheel carriage:
        • 1x v_plate-2020-delrin-230-73-10-a
        • 1x v_plate-2020-delrin-230-73-10-b
    • 3 or 4 x Y modules (1 module = 1 slider, per slider 4 x 10mm long x 4mm PTFE + 3x 8mm long x 3mm PTFE)
      • 3 or 4 x slider_2020-ptfe=true,td=4,td2=3,axis=2,closed=true,hplus=5,hole=true
  • X carriage:
    • 1x xcarriage_short_hmount_motor-endstop-left
      minimum 1.5mm top and bottom thickness, and 1.5mm wall thickness, 30% infill, layer height ~60% or less of nozzle diameter
    • 1x xcarriage_short_hmount_motor-right
      minimum 1.5mm top and bottom thickness, and 1.5mm wall thickness, 30% infill, layer height ~60% or less of nozzle diameter
    • 2x xcarriage_short_hmount
    • 1x xcarriage_beltmount-y=7,w=25
    • 1x pulley_holder
    • 1x endstop_mount
  • Printhead/Hotend:
    • 1x e3d_mount
      • 2x M3x12 (mounting to x carriage), 2x M3 nuts for insets for clamp (use M3x12 to draw nuts into inset)
    • 1x e3d_mount-type=clamp
      • 2x M3x16 (clamp E3D v6)
  • Y carriage:
    • 4x knob_30,8,6 (bed level wheels)
    • 1x ymotor_mount
    • 1x ycarriage_mount-h=15
    • 1x yendstop_bumper
    • 1x yendstop_mount
    • 1x pulley_holder
    • 1x ybelt_mount
  • Z carriage:
    • 2x zcarriage_short_mount-6,30 (for M6 threaded Z rods)
    • 1x ztop_bracket-left
    • 1x ztop_bracket-right
    • 1x zendstop_mount
  • Frame
    • 8x c_2020 (simple 2020 corners)
    • 2x l_2020-a (short L bracket)
    • 2x l_2020-b
    • 1x ll_2020-a, 3 perimeters/wall line count
    • 1x ll_2020-b, 3 perimeters/wall line count
    • 1x ll_2020-type=nema17-a (X/Z bracket + Z motor mount)
      Note: 3 perimeters/wall line count with layer height ~60% of nozzle diameter (e.g. 0.25mm @ 0.4mm nozzle or 0.3mm @0.5mm nozzle)
    • 1x ll_2020-type=nema17-b (same notes as above)
    • 2x c2_2020-a (strong L for bottom frame)
    • 2x c2_2020-b
    • 12x e_2020 (end caps)

Non-Printed (Vitamins)

  • 11x 500mm 2020 alu extrusions (T slot 6 B-type or V-slot 6)
  • Double or single V slot wheels (OpenWheel 24.4/11) and/or 18x (6 x 3) x Delrin R nylon (23/7.3) wheels (see printed parts above which are needed)
  • Screws & Nuts:
    • 200x M3 nuts
    • 100x M3 8mm
    • 20x M3 10mm
    • 20x M3 15mm
    • 150x M3 Hammer Nuts for T slot/V slot 6
    • 20x M5 x 30
    • 20x M5 nuts
  • Y carriage / bed:
    • 420 x 320 or 320 x 320 OSB 6mm as Y carriage
    • 400 x 300 or 300 x 300 3mm thick mirror
    • 400 x 300 or 300 x 300 frosted bed sticker
    • 4 x springs 20mm long, compressed 10mm
  • Belts:
    • 2x GT2 pulleys (ID 3, OD 16, 6 wide with teeths)
    • ~220cm GT2 6mm belt (200cm might be sufficient but without any cutting margins)
  • Printhead:
    • E3D V6 original / clone with 0.4mm or 0.5mm (recommended) nozzle
    • 100cm PTFE 4mm OD / 2mm ID (60cm for Bowden tube, reuse rest for sliders)
    • 1x Pneumatic Connector PC4-01
    • 1x Pneumatic Fittings PC4-M6 Bore 4.3mm for 4mm PTFE
  • Electronics:
    • 5x stepper motors Nema17 42-45NM (40mm height) with 1m wires
    • 1x control board (with Marlin support), e.g. Anet V1.0 or Makerbase MKS Gen L board
    • 2 x endstops with 1m wires

IDEX Option

In order to run two independent printheads aka IDEX (Independent Dual Extrusion) see this blog-post on Ashtar K IDEX with the details and those new pieces are needed:


  • 1x xcarriage_short_hmount_motor_2020-endstop-idex-left
  • 1x xcarriage_short_hmount_motor_2020-idex-right
  • 1x xcarriage_beltmount_2020-idex
  • 1x pulley_holder
  • 1x xcarriage_nose-idex-left
  • 1x xcarriage_nose-idex-right


  • 1x Nema17 42-45Nm (39-40mm height) with 1m wires
  • belt ~110cm GT2 6mm
  • 1x pulley
  • 1x idler

As soon I tested this option I will document it in more details, like electronics, changes in firmware, slicer settings etc.

Other Options

Related Projects